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Introduction 
Many cat owners would love to have the hand-painted drawings of their pets, and some 

of them have the ambition to create the artwork of their pets themselves, as they feel that it is a 
meaningful experience. However, it is not always easy, especially for people with limited 
drawing skills. Thanks to advances in artificial intelligence and deep learning, there are a variety 
of tools that can transform a photo into a painting within a few seconds. However, most of the 
existing tools are trained on broader datasets, not specifically cat image datasets, and tend to 
generate cartoon or anime-style outputs. As a result, those tools frequently produce distorted or 
unrealistic images when applied to cat photos. Moreover, there are a limited number of AI tools 
that specialize in generating watercolor-style paintings because learning the subtle patterns and 
variety of human brush strokes is challenging for artificial intelligence.  

Therefore, this project focuses on training a model specifically focused on generating 
watercolor-style cat paintings using Generative Adversarial Networks (GANs) using a cat image 
dataset in order to reach high fidelity, artistic authenticity, and cat-specific stylization. To achieve 
this, we experimented with multiple model architectures and workflows, including the 
CycleGAN model for unpaired image translation, a Multi-Stage pipeline for cat photo to anime 
Style conversion, and the Pix2Pix model for paired images. 

Dataset 
The cat photograph and watercolor painting data used in this project were manually 

collected from the social media platform Red Note. Specifically,  two artist accounts – @lioo and 
@march – created original cat watercolor paintings and were used to build the dataset. In total, 
245 paired images (one cat photo and a corresponding watercolor painting) were collected. Due 
to the time limitation, the dataset size remains relatively small compared to typical deep learning 
datasets, and this limits the following models’ ability to generalize to unseen cat photos. 

 
Figure 1. Example of paired training data: (left) real cat photograph; (right) watercolor painting. 

Methodology 

1.1 CycleGAN 

1.1.1 Model Development 

​ At the beginning of the project, the CycleGAN(Zhu et al., 2017) architecture was 
experimented with. CycleGAN is designed for unpaired image-to-image translation, and in this 
case, it is used to translate cat photographs to artistic-style drawings without needing exact 
photo-drawing pairs. This model includes two generators and two discriminators to train. 
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Noticeably, PatchGAN discriminator was used because of its characteristic that not just looks at 
the whole image but also focuses on small sections, which is helpful for the model to capture 
local details like fur texture and edges of the cat. Residual blocks were also employed as their 
features are ideal for retaining important information across layers and improving the overall 
image quality. 

1.1.2 Model Results 

 
Figure 2. Unseen photos output generated by the CycleGAN model after 50 epochs of training 

​ After training for 50 epochs, the generated outputs show the emergence of pink and pastel 
tones that provide a sketch or watercolor feel. However, the details of the cat are not clear and 
the reason could be that the dataset the drawings are also excluded the background and only 
focus on the cat itself, so the model may experience a hard time when the input cat photograph 
includes complex backgrounds. 

2.1 Multi-Stage pipeline 

Our approach draws inspiration from the traditional anime creation workflow employed 
by professional artists. Rather than attempting to transform photographs into anime-style images 
in a single step—a task that involves bridging substantially different visual domains—we 
developed a multi-stage pipeline that breaks this complex transformation into manageable 
sub-tasks. The pipeline consists of three stages.  

2.1.1 Edge Detection Model 

For stage 1, the edge detection, we implemented a custom neural network based on the 
VGG16 (Theckedath & Sedamkar, 2020) architecture. We designed a learning-based approach 
that could prioritize the essential structural elements. The model leverages the first 16 layers of a 
pre-trained VGG16 network as a feature extractor, followed by several convolutional layers that 
progressively reduce the feature dimensionality to produce a single-channel edge map. This 
architecture effectively combines the semantic understanding of a pre-trained network with 
specialized edge detection capabilities. Since obtaining hand-drawn edge maps as ground truth 
would be impractical at scale, we generated pseudo-ground truth using classical edge detection 
methods, which were then refined through targeted enhancements. We trained the model to 
minimize the binary cross-entropy loss between its predictions and these target edges. 
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2.1.2 Edge Detection Results 

                           

Figure 3. Input photo & output edge & input anime & output anime edge 

The edge detection stage showed promising results in extracting structural information 
from cat photographs. Our custom neural network successfully captured key features such as 
facial contours, eyes, ears, and distinctive elements like bowties or accessories, while 
appropriately filtering out less relevant details like fur texture. The model performed particularly 
well on frontal cat faces with clear lighting conditions. However, we observed limitations when 
processing images with complex backgrounds, unusual poses, or poor lighting.  

2.2.1 Line Refinement Model 

For stage 2, the line refinement stage aims to transform photo-realistic edge maps into 
anime-style line art. For this purpose, we implemented a conditional Generative Adversarial 
Network (cGAN) based on the pix2pix framework. The encoder progressively reduces spatial 
dimensions while increasing feature channels, enabling the network to learn abstract 
representations. The decoder then reconstructs the image at its original resolution while 
incorporating the learned style characteristics. The discriminator employs a PatchGAN 
architecture, which evaluates the authenticity of overlapping image patches rather than the entire 
image. We trained the line refinement model using an adversarial approach combined with a 
reconstruction loss. Training alternated between updating the discriminator to better distinguish 
real and generated anime lines and updating the generator to produce more convincing 
anime-style line art. We employed the Adam optimizer with a learning rate of 0.0002 and trained 
for 50 epochs. 

2.2.2 Line Refinement Model Results 

 

Figure 4. Input photo & output edge & & output refined edge 

The refined line output appears blurry and lacking definition compared to both the input 
edge maps and target anime lines. Important structural elements, such as eyes and facial features, 
often became indistinct in the refinement process. The model struggled to maintain the clear, 
decisive line quality characteristic of anime while attempting to simplify the input edges. These 
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results suggested that the line refinement stage represented a significant bottleneck in our 
pipeline, motivating our exploration of an alternative approach that bypassed this step. 

2.3.1 Colorization Model 

​ For stage 3, the colorization stage transforms anime-style line art into fully colored 
images. We implemented a deep residual network for this task, designed to learn the complex 
relationship between line structure and color distribution in anime. The residual connections help 
preserve structural information throughout the network, ensuring that the final colored image 
maintains the integrity of the input lines. We trained the colorization model using a combination 
of pixel-wise and perceptual losses. The primary loss function was the L1 distance between the 
generated colors and the target anime images, which encourages color accuracy. The model was 
trained for 50 epochs using the Adam optimizer with a learning rate of 0.0002, which was 
decreased gradually according to a cosine annealing schedule to ensure convergence. 

2.3.2 Colorization Results 

​ The colorization stage showed mixed results in transforming line art into fully colored 
anime-style images. When provided with high-quality anime-style line art, the model 
demonstrated a reasonable ability to apply appropriate colors, following the flat color aesthetic 
characteristic of anime. However, when processing the output from our line refinement stage, the 
colorization results were significantly compromised. The final images appeared blurry with low 
contrast and minimal definition. The model seemed to default to safe, neutral color choices rather 
than implementing the vibrant palette typical of anime. 

                                 

Figure 5. Input photo & output edge & & output refined edge & final result 

3.1 Pix2Pix Model 

3.1.1 Motivation 

When each photo of a cat is precisely aligned with a hand-drawn rendition, a paired 
formulation is preferable to unpaired CycleGAN training. We adopt the conditional adversarial 
framework of Isola et al. (2017) to force the generator to learn a deterministic mapping from real 
cat image to a stylized image. 
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3.1.2 Network Architecture 

Pix2Pix frames paired image translation as a conditional adversarial game given an input 
image x, the generator G must synthesize a corresponding output y (the drawing) that fools a 
discrim​inator D trained to distinguish real pairs (x, y) from fake pairs (x, G(x)). 

Generator: 

The generator adopts a classic UNet encoder-decoder: the encoder successively halves 
spatial resolution via stride 4×4 convolutions (feature depths 64 → 512), while the decoder 
mirrors this path with transposed-convolution up-sampling back to full resolution. Crucially, skip 
connections copy feature maps from each encoder stage to the matching decoder stage, allowing 
low-level edge and color cues to flow directly to later layers and preventing the “bottleneck blur” 
common in plain auto-encoders. A final tanh layer outputs a three-channel image scaled to 
[−1,1]. 

Discriminator: 

The discriminator is a lightweight PatchGAN: rather than classifying an entire image as 
real or fake, it slides a 70×70 receptive field across the concatenated input–output pair and 
produces a grid of realism scores. This design focuses learning capacity on high-frequency 
textures while keeping the model small (≈2.8 M parameters). Both networks are optimized 
jointly with a least-squares GAN loss for stable gradients, plus an L1 reconstruction term that 
anchors global correspondence between G(x) and the ground-truth drawing. Together, the UNet’s 
spatial skip connections and PatchGAN’s texture-sensitive critic form the core of the original 
Pix2Pix model. 

3.1.3 Objective Function 
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The model controls the generator training by minimizing these three losses to ensure the 
output contents, qualities, and details. 

3.2 Methodological Enhancements 

Because the training dataset is small and the manually extracted samples suffer from 
pixel misalignment, the model must impose substantial changes on the original images, making 
optimization particularly challenging. To address this, we propose several techniques designed to 
ease training and boost performance on small sample training. 
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3.2.1    Pixel-Level Image Alignment 

To train a reliable Pix2Pix image-to-image translation model, each “input–target” pair 
must be pixel-aligned. Our alignment pipeline uses key-point detection to translate, rotate, and 
scale the real photo and its corresponding stylized image  

We employ ORB (Oriented FAST and Rotated BRIEF) to detect feature points in both the 
real and stylized images, and additionally use Shi–Tomasi corner sampling together with 
dense-grid sampling to capture other structures (e.g., bow ties, spoon handles, whiskers), 
increasing the number of sampled points and improving matching performance. 

The affine transformation is then estimated using RANSAC (re-projection threshold = 10 
pixels), constraining the correction to translation, rotation, and uniform scaling. Finally, we warp 
the stylized image using warpAffine, applying constant white padding to eliminate border 
artifacts. 

 
Figure 6. Key points between real and stylized image 
 

 
Figure 7. The real image and the pixel-aligned 

stylized image 
3.2.2 Perceptual Loss 

Traditional Pix-to-Pix training minimizes a pixel-wise L1 distance between the generated 
image  and the ground-truth . Although L1 preserves color fidelity, it penalizes every 𝑦

^
𝑦

misaligned pixel, encouraging the generator to “copy–paste” input colors and producing overly 
smooth results. 

We complement the L1 term with a perceptual loss (Johnson et al., 2016) that measures 
similarity in the latent space of a pretrained VGG-19 encoder. We then calculate the L1 loss of 
the embedding generated by the VGG-19 encoder from the real and generated images. 
Optimizing this objective shifts the inductive bias from raw RGB toward shape, edges, and 
mid-level texture, matching human perceptual preference in cat drawings. 

3.2.3 Style Loss 

To further disentangle structure from texture, we introduce the Gram-matrix style loss 
first proposed by Gatys et al (2016). The Gram matrix can be viewed as the centred covariance 
matrix of the features. In a feature map, each entry comes from the response of a specific filter at 
a specific spatial position, so every value represents the strength of a particular feature. 
Therefore, the Gram matrix captures the pairwise correlations between all features. With this 
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style representation in place, the stylistic difference between the two images can be measured 
simply by comparing the discrepancies between their respective Gram matrices. 

3.2.4    Image transformation 

By transforming and enhancing the data, we can expand the number of samples ten times, 
and improve the robustness to viewpoint changes and occlusion, forcing the model to predict 
pixels and preventing the model from copying pixels. 

Transformation Parameters Rationale 

Horizontal/vertical flip, random 
rotation 

p=0.5,  ±15 Inject viewpoint invariance 

Random crop & resize scale ∈ [0.8, 1.0] Encourage localisation 

ColorJitter + additive Gaussian noise Δhsv ≤ 0.05; σ = 0.02 Robustness to lighting/sensor noise 

Random Erasing p=0.5, area 2 – 10 % Simulated occlusion forces global 
reasoning 

Augmentations are applied consistently to paired samples to preserve alignment， for 
unpaired CycleGAN training, each domain is transformed independently. 

3.2.5 Spatial Transformer Network (STN) 

Hand-drawn targets often suffer from translations, anisotropic scaling, or mild rotations 
relative to input photos. We embedded a Spatial Transformer module (Jaderberg, 2015) in front 
of the UNet encoder to learn an affine grid​ that warps the incoming feature map. 

It has a lightweight CNN predicting the six affine parameters, and a regular grid, and the 
Sampler performs bilinear resampling. The module is fully differentiable and incurs < 2 % 
computational overhead.  

Results 

4.1 Experimental Setup 

Datasets – After pixel-level image alignment (§3.2.1), we have 187 valid images that can be 
used for image alignment for further training. We then split 169 images for training and 18 
images for validation. The images are reshaped to 256*256 resolution and sent to the 
augmentation pipeline mentioned in 3.2.4.​
Training details – The model is trained with a batch size of 8 for 500 epochs, 0.0002 learning 
rate schedule. For the loss rate,   and linearly drops to 5,  and is 0 for the λ

𝑙1
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𝐺𝐴𝑁
= 0. 5

first 3 epochs in order to warmup,  and linearly drops to 5, . λ
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4.2 Metrics 

 

 
Figure 8. The Loss Curves of Discriminator and Generator 

 
Figure 8 shows the evolution of the five losses that drive training. Both discriminator 

terms, D_real and D_fake, drop sharply within the first 10k iterations and then stabilize close to 
zero, indicating that the discriminator quickly learns to distinguish the real stylized image and 
the generated one, without causing mode collapse. The generator’s adversarial term spikes 
briefly while the discriminator is warming up and subsequently oscillates within a tight band (≈ 
0.22 – 0.24), signalling a numerically balanced min–max game.  

By contrast, the pixel-wise reconstruction loss G_L1 falls from roughly 18 to less than 2, 
confirming that the network is steadily aligning global color and silhouette. And G_perc falls 
from 13 to 3 shows that the model has learned how to generate images with more texture 
information when training. 

4.3 Result Visualization 

 

 
Figure 9. The Real and Outputs of Cat Images 
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I.​ Single frontal body (first and second image) 

When the input cat is located at the center of the image and is clear, the generator 
preserves the overall contour and reproduces the main color tone of the cat fur and surrounding 
props (such as the yellow blanket in the second column). The eyes and nose are still clearly 
distinguishable, indicating that as long as the source layout is similar to the samples seen during 
training, the network can transfer the mid-level structure. 

II.​ Chaotic composition or multiple animals (third image). 

The images of three cats exposed a key problem: the generator collapsed different faces 
into an amorphous mass and blurred the boundary edges. The model has not yet learned to focus 
on each head. And the locally unique evaluator of PatchGAN cannot enforce global instance 
consistency. 

III.​ Significant attitude deviation or severe scale mismatch (fourth image). 

Some rare perspectives and poorly aligned cropping in the training data can result in 
output underdrawing, leaving only blurry contours. This confirms the limitations mentioned in 
section 4.5: even small residual alignment deviations between photos and sketches can disrupt 
the pixel and perceptual losses of anchor training, resulting in rendering that is overly smooth or 
even almost blank. 

Our model performs best on single-subject photos with pose and lighting conditions close 
to the training distribution and good center position, but performance sharply declines as 
composition complexity, scale variance, or alignment error increases. Addressing these 
weaknesses requires data enrichment (larger and more diverse pairing sets) and model upgrades 
(aligned perception modules, stronger global discriminators), as outlined in the future work 
roadmap. 

4.4 Failure Modes & Error Analysis 

Our qualitative inspection and metric trends expose these two major problems: 

The first problem is with the blurred contours and fur texture, the UNet baseline tends to 
reproduce coarse color blocks while smoothing high-frequency details; this is aggravated by the 
dominant pixel-wise L1 term in early training. 

The other problems are color bleeding and pastel halos. The local background picks up faint 
sketch pigments, a sign that the PatchGAN critic cannot fully police subtle texture boundaries 
when paired data are scarce. 

The problems may be caused by three major factors: 

Model: the vanilla UNet lacks global context modelling; receptive fields saturate before 
capturing long whiskers or ear tips. At the same time, because of the difficulty of the task, the 
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model is driven to achieve better indicators by copying and pasting pixels and blurring to get the 
average pixels. 

Dataset: Only about 250 aligned pairs put the adversarial generation task in an overfitting state 
of constraint and amplification. Stylized pictures also come from multiple authors, with different 
styles, different alignment positions, and different decorative contents, which interfere with the 
model training. And because there are similar pictures in the data source (the same author creates 
the same cat from different angles), this may lead to some data leakage problems. The model 
performs well in images similar to the training sample, but poorly in images with insufficient 
data. 

Task definition: Even in “paired” mode, hand-drawn targets are seldom pixel-perfectly aligned 
with their photos, violating the loss assumptions. This is too difficult for Pix2Pix's GAN model 
to learn. 

4.5 Discussion & Future Work 

Looking back at the steps and results of training the model, we believe that improvements can be 
made to the research in four major areas: 

Data expansion & synthesis 

Systematically crawl or crowdsource additional photo–drawing pairs, supplementing with 
unpaired sketches to unlock CycleGAN / diffusion training. 

Leverage a high-quality, pre-trained generative model (e.g., DALL-E or SDXL fine-tuned 
on cats) to create synthetic drawings, increasing style diversity and learning samples. 

Task redesign 

Broaden the output domain beyond cats to multiple cartoon aesthetics, encouraging the 
model to learn style primitives rather than instance memorisation. 

Model upgrades 

Replace or augment UNet with globally-aware backbones: Vision Transformers, 
VQ-VAE encoders, or latent-diffusion decoders pretrained on large-scale animal imagery. We 
have found a library (PeterWang512/GANSketching) with pre-trained sketches for real cat 
generation. The weight of the pretraining model could be useful for transfer learning, as it 
already understands the concept of cats. 

Investigate diffusion-based stylisation pipelines—Denoising Diffusion or ControlNet 
variants—whose iterative refinement is empirically sharper than single-shot GANs. 

Introduce alignment-aware modules (such as Spatial Transformer) and multi-scale 
discriminators to better tolerate residual pose shifts. As we have introduced in class, we have 
utilized a ViT generator to catch information across the image; however, due to the constraints of 
decoder ability in such a difficult task, the attention mechanism hasn’t been included. 
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